FAIRCHILD

SEMICONDUCTOR

CD4512BC 8-Channel Buffered Data Selector

General Description

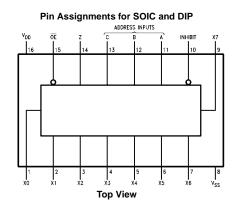
The CD4512BC buffered 8-channel data selector is a complementary MOS (CMOS) circuit constructed with N- and P-channel enhancement mode transistors. This data selector is primarily used as a digital signal multiplexer selecting 1 of 8 inputs and routing the signal to a 3-STATE output. A high level at the Inhibit input forces a low level at the output. A high level at the Output Enable (\overline{OE}) inputs allow normal operation.

Features

■ Wide supply voltage range: 3.0V to 15V

October 1987

Revised January 1999

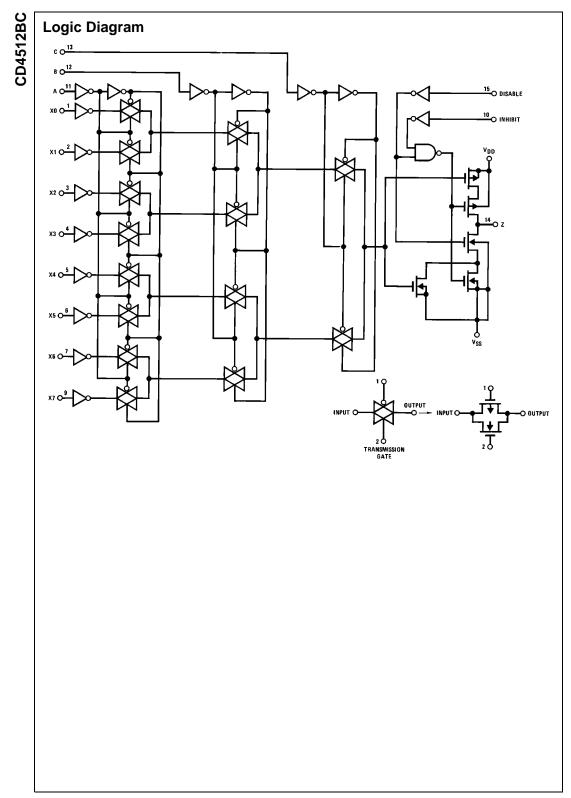

- High noise immunity: 0.45 V_{DD} (typ.)
- 3-STATE output
- Low quiescent power dissipation: 0.25 µW/package (typ.) @ V_{CC} = 5.0V
- Plug-in replacement for Motorola MC14512

Ordering Code:

Order Number	Package Number	r Package Description			
CD4512BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body			
CD4512BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tane and Reel. Specify by appending suffix "X" to the ordering code					

evices also available in Tape and Reel. Specify by appending suffix "X" to the ordering code.

Connection Diagram


Truth Table

Address Inputs			Control	Output		
С	В	Α	Inhibit OE		z	
0	0	0	0	0	X0	
0	0	1	0	0	X1	
0	1	0	0	0	X2	
0	1	1	0	0	Х3	
1	0	0	0	0	X4	
1	0	1	0	0	X5	
1	1	0	0	0	X6	
1	1	1	0	0	Х7	
2	1	1	1	0	0	
2	2	2	2	1	Hi-Z	

2 = Don't care

Hi-Z = 3-STATE condition Xn = Data at input n

© 1999 Fairchild Semiconductor Corporation DS005993.prf

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operating Conditions (Note 2)

-0.5 to $+18$ V _{DC}
-0.5 to $V_{DD} + 0.5 \ V_{DC}$
-65°C to +150°C
700 mW
500 mW
260°C

DC Electrical Characteristics (Note 2)

DC Supply Voltage (V DD) Input Voltage (VIN)

0 to V_{DD} V_{DC}

3.0 to 15 V_{DC}

 $-40^{\circ}C$ to $+85^{\circ}C$ Operating Temperature Range (T_A) Note 1: "Absolute Maximum Ratings" are those values beyond which the

safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The Recommended

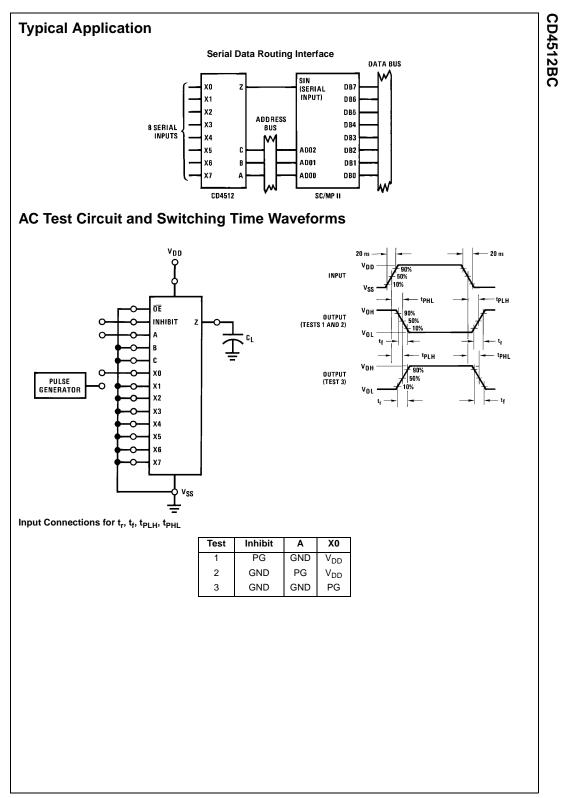
N V Operating Conditions and Electrical Characteristics table provide conditions for actual device operation. Note 2: $V_{SS} = 0V$ unless otherwise specified.

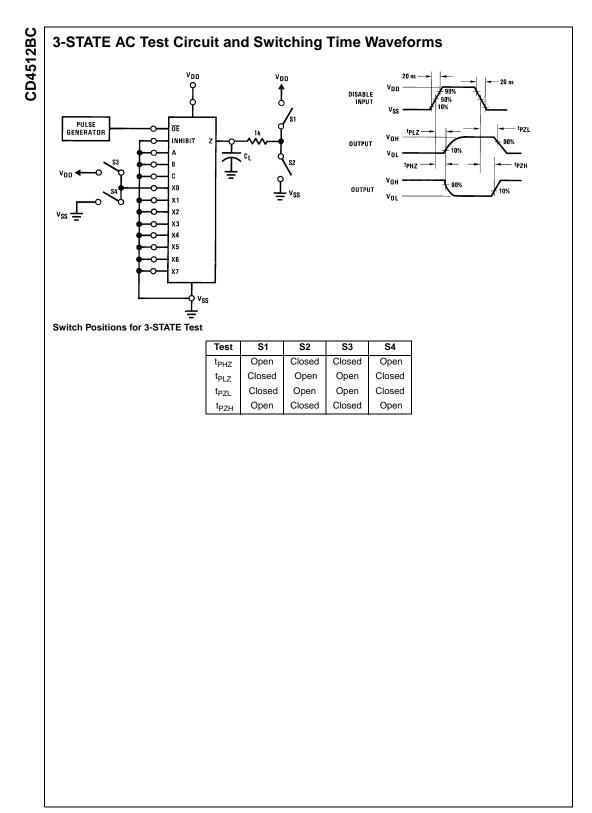
-40°C +25°C +85°C Conditions Symbol Parameter Units Min Max Max Min Тур Max Min $V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS} IDD Quiescent Device 20 0.005 20 150 μA Current $V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$ 40 0.010 40 300 μΑ $V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS}$ 80 0.015 80 600 μΑ VOL LOW Level $V_{DD} = 5V$ 0.05 0 0.05 0.05 V Output Voltage $V_{DD} = 10V$ $|I_{OL}| < 1 \ \mu A$ 0.05 0 0.05 0.05 V $V_{DD} = 15V$ 0.05 0 0.05 0.05 V HIGH Level $V_{DD} = 5V$ V Vон 4.95 4.95 5.0 4.95 Output Voltage $V_{DD} = 10V$ $|I_{OH}| < 1 \ \mu A$ 9.95 9.95 10.0 9.95 V $V_{DD} = 15V$ 14.95 14.95 15.0 14.95 V VIL LOW Level $V_{DD}=5V,\,V_O=0.5V$ 1.5 2.25 1.5 1.5 V v Input Voltage $V_{DD} = 10V, V_{O} = 1.0V$ 3.0 4.50 3.0 3.0 V_{DD} = 15V, V_O = 1.5V 4.0 6.75 4.0 4.0 V $V_{DD} = 5V, V_{O} = 4.5V$ VIH HIGH Level 3.5 3.5 2.75 3.5 ٧ Input Voltage $V_{DD} = 10V, V_{O} = 9.0V$ 7.0 7.0 v 7.0 5.50 $V_{DD} = 15V, V_O = 13.5V$ 11.0 11.0 8.25 11.0 V LOW Level Output $V_{DD} = 5V, V_{O} = 0.4V$ loL 0.52 0.44 0.78 0.36 mΑ Current $V_{DD} = 10V, V_{O} = 0.5V$ 1.3 1.1 2.0 0.9 mΑ (Note 3) $V_{DD} = 15V, V_{O} = 1.5V$ 3.6 3.4 7.8 2.4 mΑ HIGH Level Output $V_{DD} = 5V, V_O = 4.6V$ -0.2 -0.12 I_{OH} -0.16 mΑ V_{DD} = 10V, V_O = 9.5 Current -0.5 -0.4 -0.3 mΑ (Note 3) V_{DD} = 15V, V_O = 13.5V -1.4 -1.2 -1.0 mA Input Current $V_{DD} = 15V, V_{IN} = 0V$ IIN -0.3 -10 -0.3 -1.0 μΑ 10⁻⁵ $V_{DD} = 15V, V_{IN} = 15V$ 0.3 0.3 1.0 μΑ 3-STATE $V_{DD} = 15V, V_{O} = 0V$ ±1.0 $+10^{-1}$ ±1.0 +7.5loz μΑ $V_{DD} = 15V, V_O = 15V$ Output Current

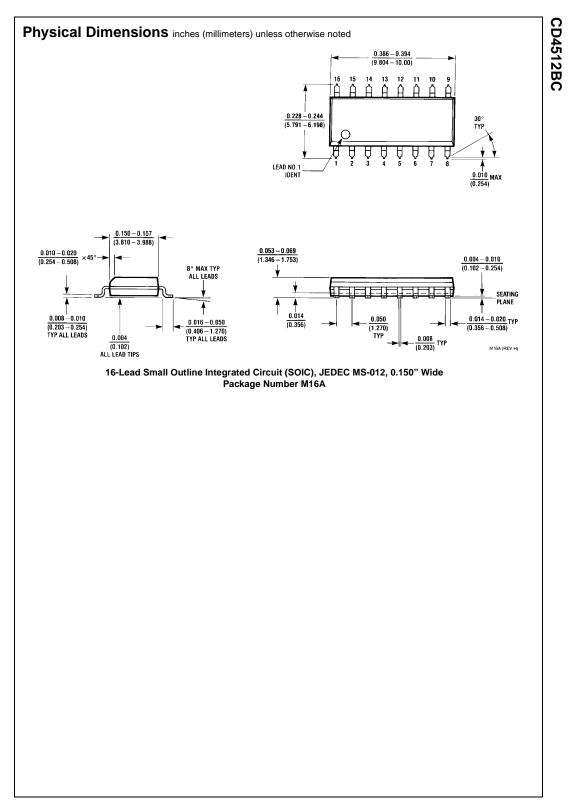
Note 3: I_{OH} and I_{OL} are tested one output at a time

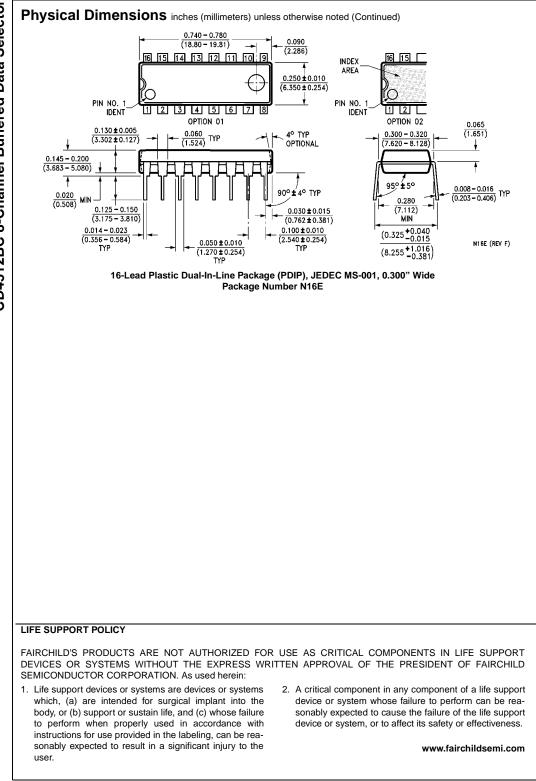
CD4512BC

S
ш
2
5
ņ
4
Δ
C


AC Electrical Characteristics (Note 4)


Symbol	Parameter	Conditions	(CD4512BM			CD4512BC		
Symbol			Min	Тур	Max	Min	Тур	Max	Units
t _{PHL}	Propagation Delay	$V_{DD} = 5V$		225	500		225	750	ns
	HIGH-to-LOW Level	$V_{DD} = 10V$		75	175		75	200	ns
		$V_{DD} = 15V$		57	130		57	150	ns
	Propagation Delay	$V_{DD} = 5V$		225	500		225	750	ns
	LOW-to-HIGH Level	$V_{DD} = 10V$		75	175		75	200	ns
		$V_{DD} = 15V$		57	130		57	150	ns
t _{THL} , t _{TLH} T	Transition Time	$V_{DD} = 5V$		70	200		70	200	ns
		$V_{DD} = 10V$		35	100		35	100	ns
		$V_{DD} = 15V$		25	80		25	80	ns
	Propagation Delay into	$V_{DD} = 5V$		50	125		50	125	ns
	3-STATE from Logic Level	$V_{DD} = 10V$		25	75		25	75	ns
		$V_{DD} = 15V$		19	60		19	60	ns
t _{PZH} , t _{PZL}	Propagation Delay to Logic	$V_{DD} = 5V$		50	125		50	125	ns
	Level from 3-STATE	$V_{DD} = 10V$		25	75		25	75	ns
		$V_{DD} = 15V$		19	60		19	60	ns
C _{IN}	Input Capacitance	(Note 5)		7.5	15		7.5	15	pF
C _{OUT}	3-STATE Output	(Note 5)		7.5	15		7.5	15	pF
	Capacitance								
C _{PD}	Power Dissipation Capacity	(Note 6)		150			150		pF


Note 4: AC Parameters are guaranteed by DC correlated testing.


Note 5: Capacitance guaranteed by periodic testing.

Note 6: C_{PD} determines the no load AC power of any CMOS device. For complete explanation, see Family Characteristics Application Note, AN-90.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.