FAIRCHILD

SEMICONDUCTOR

October 1987 Revised July 1999

CD40174BC • CD40175BC Hex D-Type Flip-Flop • Quad D-Type Flip-Flop

General Description

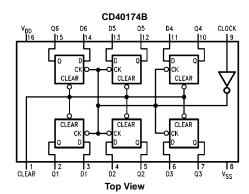
The CD40174BC consists of six positive-edge triggered Dtype flip-flops; the true outputs from each flip-flop are externally available. The CD40175BC consists of four positiveedge triggered D-type flip-flops; both the true and complement outputs from each flip-flop are externally available.

All flip-flops are controlled by a common clock and a common clear. Information at the D inputs meeting the set-up time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. The clearing operation, enabled by a negative <u>p</u>ulse at Clear input, clears all Q outputs to logical "0" and Q s (CD40175BC only) to logical "1".

All inputs are protected from static discharge by diode clamps to V_{DD} and $V_{SS}.$

Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility:
- fan out of 2 driving 74L or 1 driving 74 LS ■ Equivalent to MC14174B, MC14175B
- Equivalent to MM74C174, MM74C175


Ordering Code:


00404740014		
CD40174BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
CD40174BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD40175BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
CD40175BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Pin Assignments for DIP and SOIC

© 1999 Fairchild Semiconductor Corporation DS005987

CD40174BC • CD40175BC

Inputs			Outputs		
Clear	Clock	D	Q	Q (Note 1)	
L	Х	Х	L	н	
н	\uparrow	н	н	L	
н	\uparrow	L	L	н	
н	н	х	NC	NC	
н	L	х	NC	NC	

H = HIGH Level L = LOW Level X = Irrelevant ↑ = Transition from LOW-to-HIGH level NC = No change

Note 1: \overline{Q} for CD40175B only

Truth Table

Absolute Maximum Ratings(Note 2)

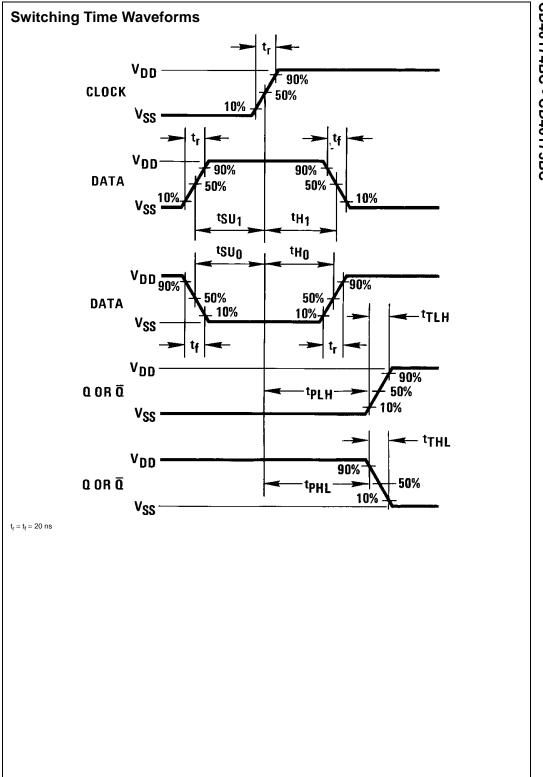
	U (
(Note 3)	
DC Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	–0.5V to V_{DD} +0.5V $_{DC}$
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 3)

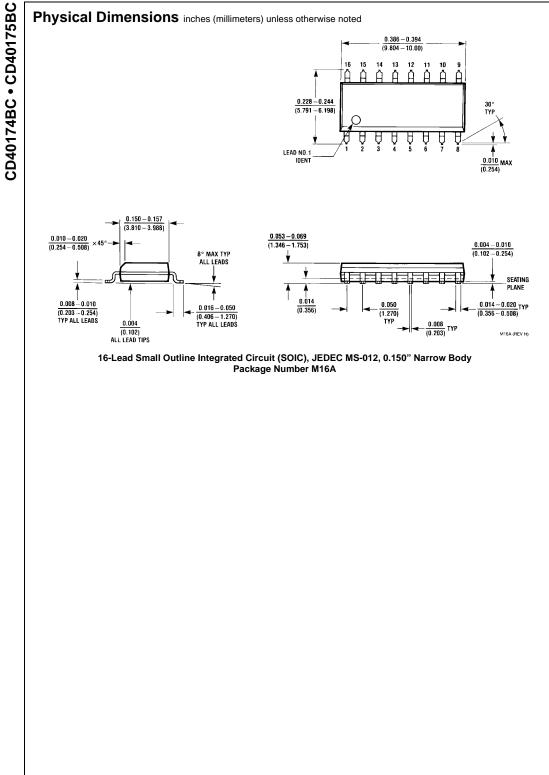
DC Supply Voltage (V _{DD})	3V to 15 V_{DC}
Input Voltage (V _{IN})	0V to $V_{DD} V_{DC}$
Operating Temperature Range (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Note 2: "Absolute Maximum Ratings" are those va safety of the device cannot be guaranteed. They	are not meant to imply
that the devices should be operated at these limits.	The tables of "Recom-

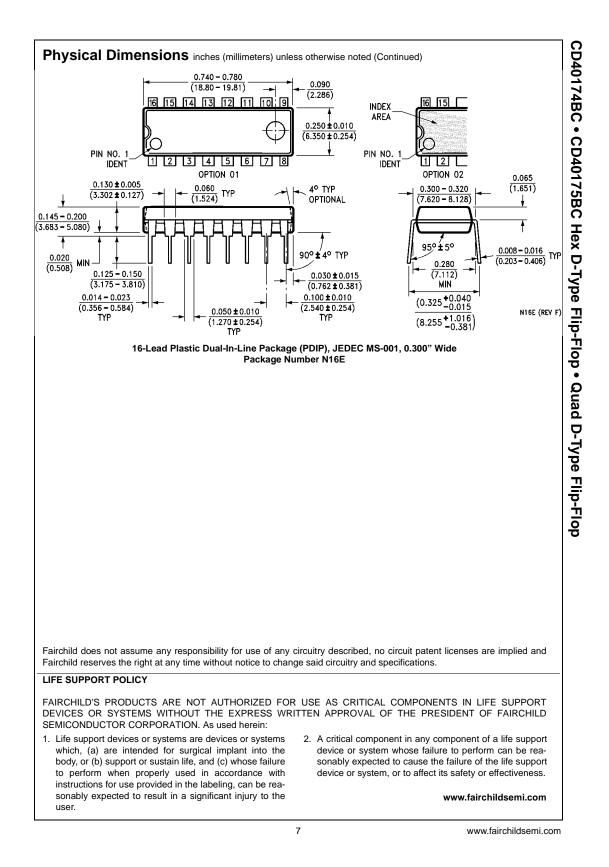
that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation. **Note 3:** $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)


Symbol	Parameter	Conditions	-40	−40°C		+25°C			+85°C	
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Мах	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		4			4		30	μA
	Current	V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		8			8		60	μA
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		16			16		120	μA
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05			0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	V
V _{ОН}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5	5 V 0 V 0 V
	Input Voltage	$V_{DD} = 10V, V_O = 1V \text{ or } 9V$		3.0			3.0		3.0	V
		$V_{DD} = 15V$, $V_O = 1.5V$ or $13.5V$		4.0			4.0		4.0	V
VIH	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		V
	Input Voltage	$V_{DD} = 10V, V_O = 1V \text{ or } 9V$	7.0		7.0			7.0		V
		$V_{DD} = 15V$, $V_O = 1.5V$ or $13.5V$	11.0		11.0			11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10 ⁻⁵	-0.30		-1.0	mA mA mA
		V _{DD} = 15V, V _{IN} = 15V		0.30		10 ⁻⁵	0.30		1.0	μA

Note 4: $I_{\mbox{OH}}$ and $I_{\mbox{OL}}$ are tested one output at a time.


$T_{\rm A} = 25 0, 0_{\rm L}$	= 50 pF, R_L = 200k and t_r = t_f = 20 ns, unl	eas otherwise specified				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL} , t _{PLH}	Propagation Delay Time to a	$V_{DD} = 5V$		190	300	ns
	Logical "0" or Logical "1" from	$V_{DD} = 10V$		75	110	ns
	Clock to Q or Q (CD40175 Only)	$V_{DD} = 15V$		60	90	ns
t _{PHL}	Propagation Delay Time to a	$V_{DD} = 5V$		180	300	ns
	Logical "0" from Clear to Q	$V_{DD} = 10V$		70	110	ns
		$V_{DD} = 15V$		60	90	ns
t _{PLH}	Propagation Delay Time to a Logical	$V_{DD} = 5V$		230	400	ns
	"1" from Clear to Q (CD40175 Only)	$V_{DD} = 10V$		90	150	ns
		$V_{DD} = 15V$		75	120	ns
t _{SU}	Time Prior to Clock Pulse that	$V_{DD} = 5V$		45	100	ns
	Data must be Present	$V_{DD} = 10V$		15	40	ns
		$V_{DD} = 15V$		13	35	ns
t _H	Time after Clock Pulse that	$V_{DD} = 5V$		-11	0	ns
	Data Must be Held	$V_{DD} = 10V$		-4	0	ns
		$V_{DD} = 15V$		-3	0	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WH} , t _{WL}	Minimum Clock Pulse Width	$V_{DD} = 5V$		130	250	ns
		$V_{DD} = 10V$		45	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL}	Minimum Clear Pulse Width	$V_{DD} = 5V$		120	250	ns
		$V_{DD} = 10V$		45	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{RCL}	Maximum Clock Rise Time	$V_{DD} = 5V$	15			μs
		$V_{DD} = 10V$	5.0			μs
		$V_{DD} = 15V$	5.0			μs
t _{fCL}	Maximum Clock Fall Time	$V_{DD} = 5V$	15	50		μs
		$V_{DD} = 10V$	5.0	50		μs
		$V_{DD} = 15V$	5.0	50		μs
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	2.0	3.5		MH
		$V_{DD} = 10V$	5.0	10		MH
		$V_{DD} = 15V$	6.0	12		MH
C _{IN}	Input Capacitance	Clear Input		10	15	pF
		Other Input		5.0	7.5	pF
C _{PD}	Power Dissipation	Per Package (Note 6)		130		


Note 5: AC Parameters are guaranteed by DC correlated testing.

Note 6: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.

CD40174BC • CD40175BC

