#### FAIRCHILD

SEMICONDUCTOR

## CD4016BC Quad Bilateral Switch

#### **General Description**

The CD4016BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4066BC.

#### Features

- Wide supply voltage range: 3V to 15V
- $\blacksquare$  Wide range of digital and analog switching:  $\pm7.5~V_{\text{PEAK}}$
- "ON" resistance for 15V operation:  $400\Omega$  (typ.)
- Matched "ON" resistance over 15V signal input:  $\Delta R_{ON} = 10\Omega$  (typ.)

High degree of linearity:
0.4% distortion (typ.)

@ 
$$f_{IS} = 1 \text{ kHz}, V_{IS} = 5 V_{p-p}$$

 $V_{DD}-V_{SS} = 10V, R_L = 10 \text{ k}\Omega$ 

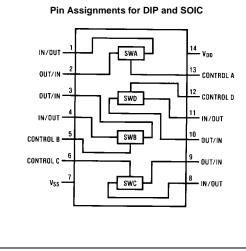
Extremely low "OFF" switch leakage:

0.1 nA (typ.) @  $V_{DD} - V_{SS} = 10V$  $T_A = 25^{\circ}C$  Extremely high control input impedance:  $10^{12}\Omega$  (typ.)

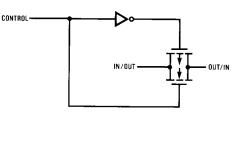
November 1983

Revised January 1999

- Low crosstalk between switches:
  - -50 dB (typ.)
  - @ f<sub>IS</sub> = 0.9 MHz, R<sub>L</sub> = 1 k $\Omega$
- Frequency response, switch "ON": 40 MHz (typ.)


#### **Applications**

- Analog signal switching/multiplexing
  - Signal gating Squelch control
  - Chopper
  - Modulator/Demodulator
  - Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain


#### **Ordering Code:**

| Order Number           | Package Number            | Package Description                                                          |
|------------------------|---------------------------|------------------------------------------------------------------------------|
| CD4016BCM              | M14A                      | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow |
| CD4016BCN              | N14A                      | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |
| Devices also available | in Tape and Reel. Specify | by appending the letter suffix "X" to the ordering code.                     |

#### **Connection Diagram**







© 1999 Fairchild Semiconductor Corporation DS005661.prf

CD4016BC

#### Absolute Maximum Ratings(Note 1) (Note 2)

| (                                        |                                    |
|------------------------------------------|------------------------------------|
| V <sub>DD</sub> Supply Voltage           | -0.5V to +18V                      |
| V <sub>IN</sub> Input Voltage            | $-0.5V$ to $V_{DD} + 0.5V$         |
| T <sub>S</sub> Storage Temperature Range | $-65^{\circ}C$ to $+ 150^{\circ}C$ |
| Power Dissipation (P <sub>D</sub> )      |                                    |
| Dual-In-Line                             | 700 mW                             |
| Small Outline                            | 500 mW                             |
| Lead Temperature                         |                                    |
| (Soldering, 10 seconds)                  | 260°C                              |
|                                          |                                    |

# Recommended Operating Conditions (Note 2)

| V <sub>DD</sub> Supply Voltage             | 3V to 15V                        |
|--------------------------------------------|----------------------------------|
| V <sub>IN</sub> Input Voltage              | 0V to V <sub>DD</sub>            |
| T <sub>A</sub> Operating Temperature Range | $-40^{\circ}C$ to $+85^{\circ}C$ |

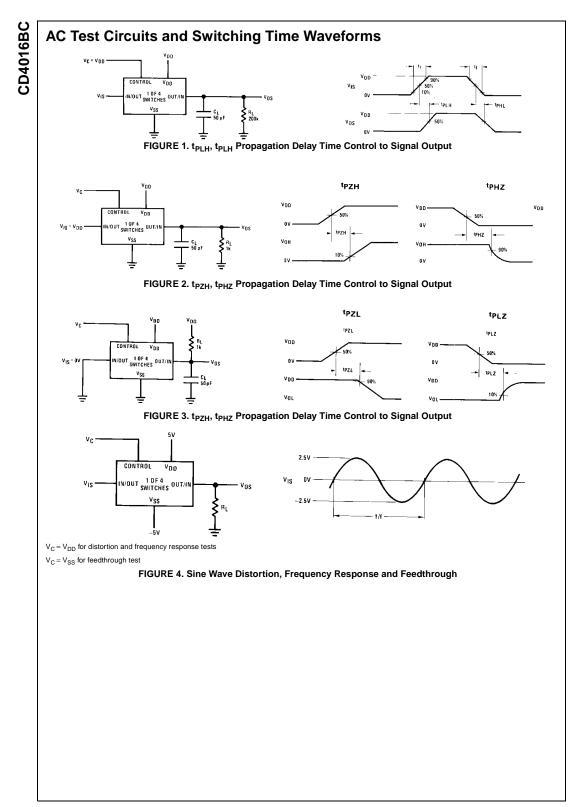
| Note 1: "Absolute Maximum Ratings" are those values beyond which the       |
|----------------------------------------------------------------------------|
| safety of the device cannot be guaranteed. They are not meant to imply     |
| that the devices should be operated at these limits. The tables of "Recom- |
| mended Operating Conditions" and "Electrical Characteristics" provide con- |

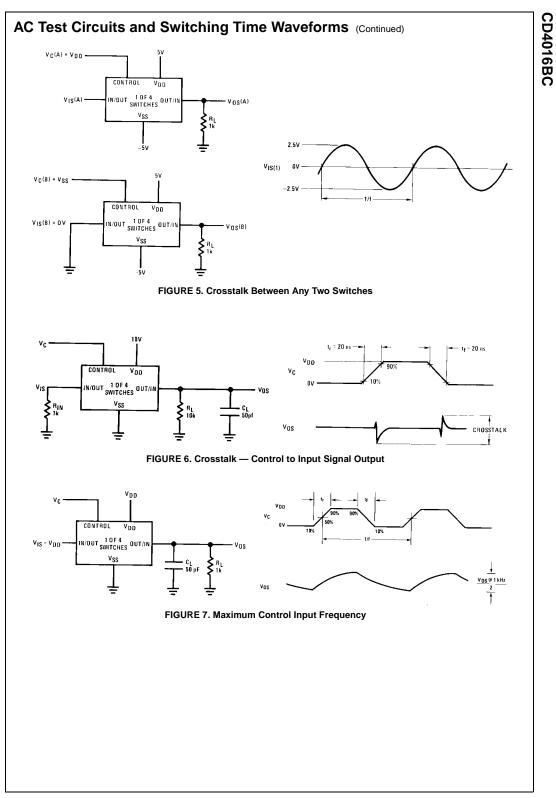
ditions for actual device operation. Note 2:  $V_{SS} = 0V$  unless otherwise specified.

#### DC Electrical Characteristics (Note 2)

| Symbol           | Parameter         | Conditions                                               | -4   | <b>−40°C</b> |      | 25°C              |      |      | +85°C |       |
|------------------|-------------------|----------------------------------------------------------|------|--------------|------|-------------------|------|------|-------|-------|
| Symbol           | Parameter         | Conditions                                               | Min  | Max          | Min  | Тур               | Max  | Min  | Max   | Units |
| I <sub>DD</sub>  | Quiescent Device  | $V_{DD} = 5V$ , $V_{IN} = V_{DD}$ or $V_{SS}$            |      | 1.0          |      | 0.01              | 1.0  |      | 7.5   | μA    |
|                  | Current           | $V_{DD} = 10V$ , $V_{IN} = V_{DD}$ or $V_{SS}$           |      | 2.0          |      | 0.01              | 2.0  |      | 15    | μA    |
|                  |                   | $V_{DD} = 15V$ , $V_{IN} = V_{DD}$ or $V_{SS}$           |      | 4.0          |      | 0.01              | 4.0  |      | 30    | μA    |
| Signal Inp       | outs and Outputs  |                                                          |      |              |      |                   |      |      |       |       |
| R <sub>ON</sub>  | "ON" Resistance   | $R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$               |      |              |      |                   |      |      |       |       |
|                  |                   | $V_{C} = V_{DD}$ , $V_{IS} = V_{SS}$ or $V_{DD}$         |      |              |      |                   |      |      |       |       |
|                  |                   | $V_{DD} = 10V$                                           |      | 610          |      | 275               | 660  |      | 840   | Ω     |
|                  |                   | V <sub>DD</sub> = 15V                                    |      | 370          |      | 200               | 400  |      | 520   | Ω     |
|                  |                   | $R_{I} = 10k\Omega$ to $(V_{DD} - V_{SS})/2$             |      |              |      |                   |      |      |       |       |
|                  |                   | $V_{\rm C} = V_{\rm DD}$                                 |      |              |      |                   |      |      |       |       |
|                  |                   | $V_{DD} = 10V, V_{IS} = 4.75 \text{ to } 5.25V$          |      | 1900         |      | 850               | 2000 |      | 2380  | Ω     |
|                  |                   | $V_{DD} = 15V, V_{IS} = 7.25 \text{ to } 7.75V$          |      | 790          |      | 400               | 850  |      | 1080  | Ω     |
| ∆R <sub>ON</sub> | ∆"ON" Resistance  | $R_{\rm I} = 10k\Omega$ to $(V_{\rm DD} - V_{\rm SS})/2$ |      |              |      |                   |      |      |       |       |
| 0.11             | Between any 2 of  | $V_{C} = V_{DD}$ , $V_{IS} = V_{SS}$ to $V_{DD}$         |      |              |      |                   |      |      |       |       |
|                  | 4 Switches        | $V_{DD} = 10V$                                           |      |              |      | 15                |      |      |       | Ω     |
|                  | (In Same Package) | $V_{DD} = 15V$                                           |      |              |      | 10                |      |      |       | Ω     |
| IIS              | Input or Output   | $V_{\rm C} = 0, V_{\rm DD} = 15V$                        |      | ±50          |      | ±0.1              | ±50  |      | ±200  | nA    |
|                  | Leakage           | V <sub>IS</sub> = 0V or 15V,                             |      |              |      |                   |      |      |       |       |
|                  | Switch "OFF"      | $V_{OS} = 15V \text{ or } 0V$                            |      |              |      |                   |      |      |       |       |
| Control Ir       | nputs             |                                                          |      |              |      |                   |      |      |       |       |
| VILC             | LOW Level Input   | $V_{IS} = V_{SS}$ and $V_{DD}$                           |      |              |      |                   |      |      | [     |       |
|                  | Voltage           | $V_{OS} = V_{DD}$ and $V_{SS}$                           |      |              |      |                   |      |      |       |       |
|                  |                   | $I_{IS} = \pm 10 \ \mu A$                                |      |              |      |                   |      |      |       |       |
|                  |                   | $V_{DD} = 5V$                                            |      | 0.9          |      |                   | 0.7  |      |       | V     |
|                  |                   | $V_{DD} = 10V$                                           |      | 0.9          |      |                   | 0.7  |      | 0.4   | V     |
|                  |                   | $V_{DD} = 15V$                                           |      | 0.9          |      |                   | 0.7  |      | 0.4   | V     |
| VIHC             | HIGH Level Input  | $V_{DD} = 5V$                                            | 3.5  |              | 3.5  |                   |      | 3.5  |       | V     |
|                  | Voltage           | $V_{DD} = 10V$                                           | 7.0  |              | 7.0  |                   |      | 7.0  |       | V     |
|                  | -                 | $V_{DD} = 15V$                                           | 11.0 |              | 11.0 |                   |      | 11.0 |       | v     |
|                  |                   | (Note 3) and Figure 8                                    |      |              |      |                   |      |      |       |       |
| I <sub>IN</sub>  | Input Current     | V <sub>CC</sub> - V <sub>SS</sub> = 15V                  |      | ±0.3         |      | ±10 <sup>-5</sup> | ±0.3 |      | ±1.0  | μA    |
|                  |                   | $V_{DD} \ge V_{IS} \ge V_{SS}$                           |      |              |      |                   |      |      |       |       |
|                  |                   | $V_{DD} \ge V_C \ge V_{SS}$                              |      |              |      |                   |      |      |       |       |

Note 3: If the switch input is held at  $V_{DD}$ ,  $V_{IHC}$  is the control input level that will cause the switch output to meet the standard "B" series  $V_{OH}$  and  $I_{OH}$  output levels. If the analog switch input is connected to  $V_{SS}$ ,  $V_{IHC}$  is the control input level — which allows the switch to sink standard "B" series  $|I_{OH}|$ , high level current, and still maintain a  $V_{OL} \leq$  "B" series. These currents are shown in Figure 8.


| Symbol                              | Parameter                      | Conditions                                                                   | Min   | Тур  | Max   | Units             |
|-------------------------------------|--------------------------------|------------------------------------------------------------------------------|-------|------|-------|-------------------|
| -                                   |                                |                                                                              | WIIII | тур  | IVIAA | onits             |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Propagation Delay Time         | $V_{C} = V_{DD}$ , $C_{L} = 50$ pF, (Figure 1)                               |       |      |       |                   |
|                                     | Signal Input to Signal Output  | $R_L = 200k$                                                                 |       |      | 400   |                   |
|                                     |                                | $V_{DD} = 5V$                                                                |       | 58   | 100   | ns                |
|                                     |                                | V <sub>DD</sub> = 10V                                                        |       | 27   | 50    | ns                |
|                                     |                                | V <sub>DD</sub> = 15V                                                        |       | 20   | 40    | ns                |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Propagation Delay Time         | $R_L = 1.0 \text{ k}\Omega, C_L = 50 \text{ pF}, (Figure 2, Figure 3)$       |       |      |       |                   |
|                                     | Control Input to Signal        | $V_{DD} = 5V$                                                                |       | 20   | 50    | ns                |
|                                     | Output HIGH Impedance to       | $V_{DD} = 10V$                                                               |       | 18   | 40    | ns                |
|                                     | Logical Level                  | V <sub>DD</sub> = 15V                                                        |       | 17   | 35    | ns                |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Propagation Delay Time         | $R_L = 1.0 \text{ k}\Omega$ , $C_L = 50 \text{ pF}$ , (Figure 2, Figure 3)   |       |      |       |                   |
|                                     | Control Input to Signal        | $V_{DD} = 5V$                                                                |       | 15   | 40    | ns                |
|                                     | Output Logical Level to        | $V_{DD} = 10V$                                                               |       | 11   | 25    | ns                |
|                                     | HIGH Impedance                 | V <sub>DD</sub> = 15V                                                        |       | 10   | 22    | ns                |
|                                     | Sine Wave Distortion           | $V_{C} = V_{DD} = 5V, V_{SS} = -5$                                           |       | 0.4  |       | %                 |
|                                     |                                | $R_{L} = 10 \text{ k}\Omega, V_{IS} = 5 \text{ V}_{P-P}, f = 1 \text{ kHz},$ |       |      |       |                   |
|                                     |                                | (Figure 4)                                                                   |       |      |       |                   |
|                                     | Frequency Response — Switch    | $V_{C} = V_{DD} = 5V, V_{SS} = -5V,$                                         |       | 40   |       | MHz               |
|                                     | "ON" (Frequency at -3 dB)      | $R_{L} = 1 \text{ k}\Omega,  V_{IS} = 5  V_{P-P},$                           |       |      |       |                   |
|                                     |                                | 20 Log <sub>10</sub> V <sub>OS</sub> /V <sub>OS</sub> (1 kHz) –dB,           |       |      |       |                   |
|                                     |                                | (Figure 4)                                                                   |       |      |       |                   |
|                                     | Feedthrough — Switch "OFF"     | $V_{DD} = 5V, V_C = V_{SS} = -5V,$                                           |       | 1.25 |       | MHz               |
|                                     | (Frequency at –50 dB)          | $R_L = 1 \text{ k}\Omega,  V_{IS} = 5  V_{P-P},$                             |       |      |       |                   |
|                                     |                                | 20 $Log_{10}$ (V <sub>OS</sub> /V <sub>IS</sub> ) = -50 dB,                  |       |      |       |                   |
|                                     |                                | (Figure 4)                                                                   |       |      |       |                   |
|                                     | Crosstalk Between Any Two      | $V_{DD} = V_{C(A)} = 5V; V_{SS} = V_{C(B)} = -5V,$                           |       | 0.9  |       | MHz               |
|                                     | Switches (Frequency at –50 dB) | $R_L = 1 \ k\Omega V_{IS(A)} = 5 \ V_{P-P},$                                 |       |      |       |                   |
|                                     |                                | 20 $Log_{10} (V_{OS(B)}/V_{OS(A)}) = -50 \text{ dB},$                        |       |      |       |                   |
|                                     |                                | (Figure 5)                                                                   |       |      |       |                   |
|                                     | Crosstalk; Control Input to    | $V_{DD} = 10V$ , $R_L = 10 k\Omega$                                          |       | 150  |       | mV <sub>P-P</sub> |
|                                     | Signal Output                  | $R_{IN} = 1 \text{ k}\Omega$ , $V_{CC} = 10V$ Square Wave,                   |       |      |       |                   |
|                                     |                                | C <sub>L</sub> = 50 pF (Figure 6)                                            |       |      |       |                   |
|                                     | Maximum Control Input          | $R_L = 1 \text{ k}\Omega$ , $C_L = 50 \text{ pF}$ , (Figure 7)               |       |      |       |                   |
|                                     |                                | $V_{OS(f)} = \frac{1}{2} V_{OS}(1 \text{ kHz})$                              |       |      |       |                   |
|                                     |                                | $V_{DD} = 5V$                                                                |       | 6.5  |       | MHz               |
|                                     |                                | $V_{DD} = 10V$                                                               |       | 8.0  |       | MHz               |
|                                     |                                | $V_{DD} = 15V$                                                               |       | 9.0  |       | MHz               |
| C <sub>IS</sub>                     | Signal Input Capacitance       |                                                                              |       | 4    |       | pF                |
| C <sub>OS</sub>                     | Signal Output Capacitance      | $V_{DD} = 10V$                                                               |       | 4    |       | pF                |
| CIOS                                | Feedthrough Capacitance        | $V_{C} = 0V$                                                                 |       | 0.2  |       | pF                |
| CIN                                 | Control Input Capacitance      |                                                                              |       | 5    | 7.5   | pF                |


Note 4: AC Parameters are guaranteed by DC correlated testing.

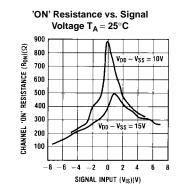
Note 5: These devices should not be connected to circuits with the power "ON".

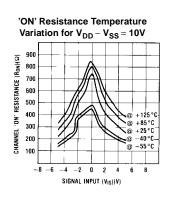
Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in CL wherever it is specified.

Note 7:  $V_{IS}$  is the voltage at the in/out pin and  $V_{OS}$  is the voltage at the out/in pin.  $V_C$  is the voltage at the control input.

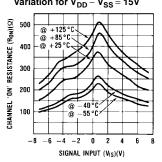


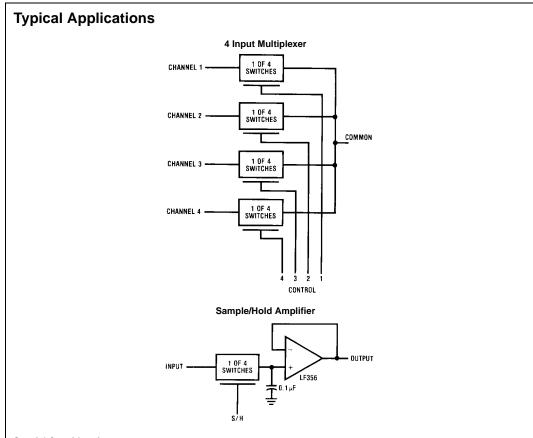






#### AC Test Circuits and Switching Time Waveforms (Continued)

| Temperature |                 |                                      | Switcl       | h Input |       | Switch              | Output |  |
|-------------|-----------------|--------------------------------------|--------------|---------|-------|---------------------|--------|--|
| Range       | V <sub>DD</sub> | V <sub>IS</sub> I <sub>IS</sub> (mA) |              |         |       | V <sub>os</sub> (V) |        |  |
|             |                 |                                      | <b>−40°C</b> | 25°C    | +85°C | Min                 | Max    |  |
|             | 5               | 0                                    | 0.2          | 0.16    | 0.12  |                     | 0.4    |  |
|             | 5               | 5                                    | -0.2         | -0.16   | -0.12 | 4.6                 |        |  |
| COMMERCIAL  | 10              | 0                                    | 0.5          | 0.4     | 0.3   |                     | 0.5    |  |
|             | 10              | 10                                   | -0.5         | -0.4    | -0.3  | 9.5                 |        |  |
|             | 15              | 0                                    | 1.4          | 1.2     | 1.0   |                     | 1.5    |  |
|             | 15              | 15                                   | -1.4         | -1.2    | -1.0  | 13.5                |        |  |


FIGURE 8. CD4016B Switch Test Conditions for VIHC

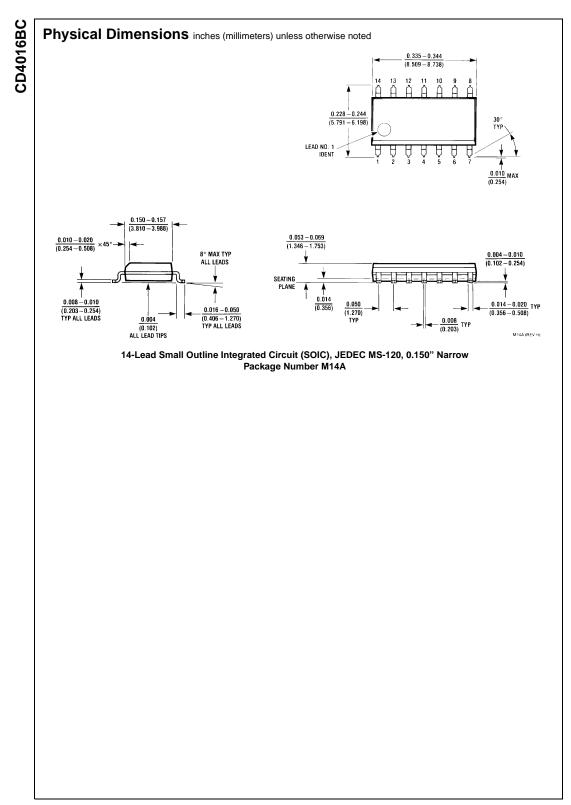

### **Typical Performance Characteristics**

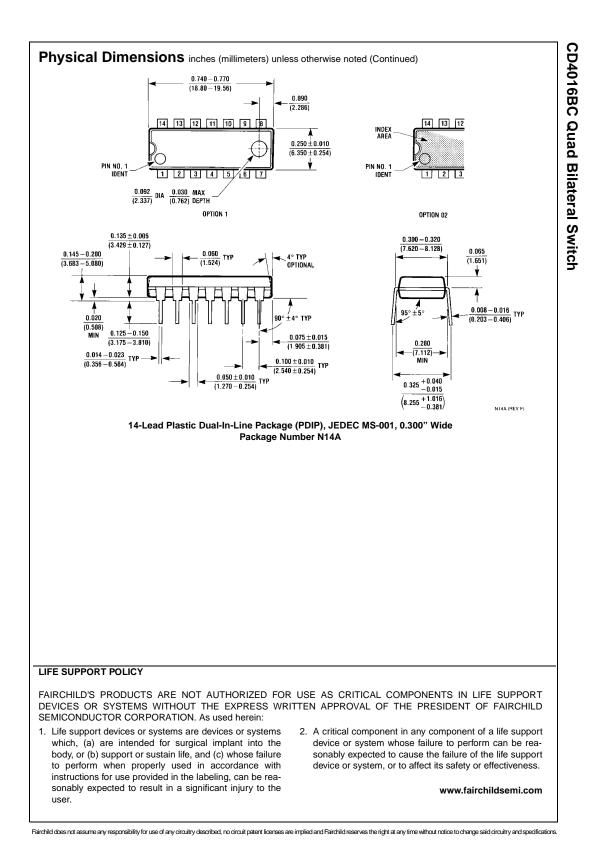




'ON' Resistance Temperature Variation for  $V_{DD}-V_{SS}\,{=}\,15V$ 







#### **Special Considerations**

The CD4016B is composed of 4, two-transistor analog switches. These switches do not have any linearization or compensation circuitry for "R<sub>ON</sub>" as do the CD4066B's. Because of this, the special operating considerations for the CD4066B do not apply to the CD4016B, but at low supply voltages,  $\leq$ 5V, the CD4016B's on resistance becomes

non-linear. It is recommended that at 5V, voltages on the in/ out pins be maintained within about 1V of either  $V_{DD}$  or  $V_{SS}$ ; and that at 3V the voltages on the in/out pins should be at  $V_{DD}$  or  $V_{SS}$  for reliable operation.

CD4016BC



