FAIRCHILD

SEMICONDUCTOR

CD40106BC Hex Schmitt Trigger

General Description

The CD40106BC Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative-going threshold voltages, V_{T+} and V_{T-}, show low variation with respect to temperature (typ 0.0005V/°C at V_{DD} = 10V), and hysteresis, V_{T+} - V_{T-} \geq 0.2 V_{DD} is guaranteed.

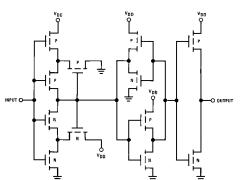
All inputs are protected from damage due to static discharge by diode clamps to V_{DD} and $V_{\text{SS}}.$

Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.7 V_{DD} (typ.)
- Low power TTL compatibility:
- Fan out of 2 driving 74L or 1 driving 74LS ■ Hysteresis: 0.4 V_{DD} (typ.),
- 0.2 V_{DD} guaranteed
- Equivalent to MM74C14
- Equivalent to MC14584B

Ordering Code:

Order Number	Package Number	Package Description
CD40106BCM	M14A	14-Lead Small Outline integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body
CD40106BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tane and Reel Specify	by appending the suffix letter "X" to the ordering code


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagram

Schematic Diagram

Top View

© 1999 Fairchild Semiconductor Corporation DS005985.prf

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1) (Note 2)

DC Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V _{DD})	3 to 15 V _{DC}
Input Voltage (V _{IN})	0 to $V_{DD} V_{DC}$

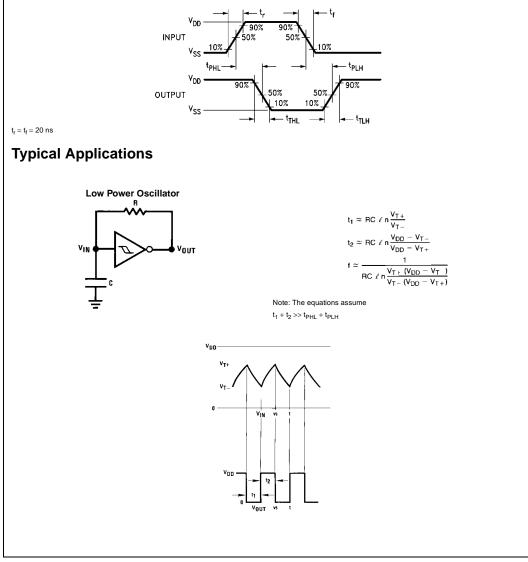
mended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

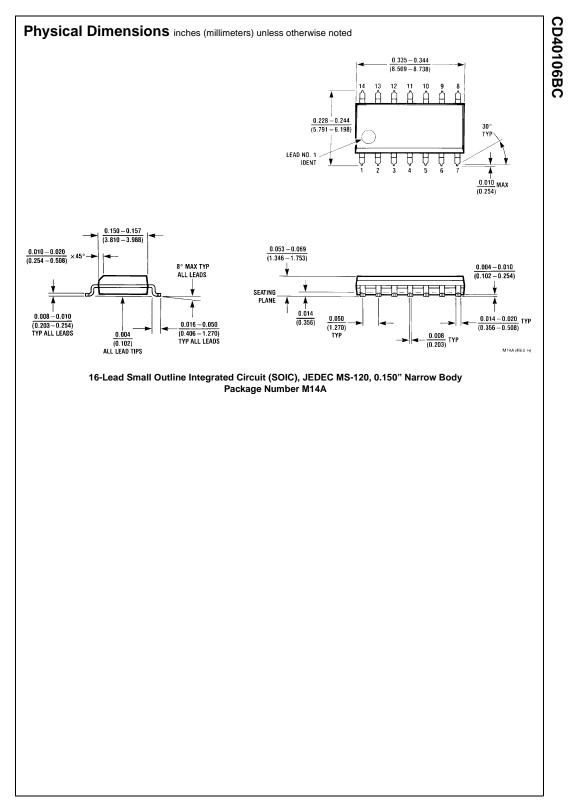
Symbol	Parameter	Conditions	-40	-40°C		+25°C			+85°C	
Symbol	Parameter	Conditions	Min	Min Max		Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		4.0			4.0		30	μA
		$V_{DD} = 10V$		8.0			8.0		60	μA
		$V_{DD} = 15V$		16.0			16.0		120	μA
V _{OL}	LOW Level Output	I _O < 1 μA								
	Voltage	$V_{DD} = 5V$		0.05			0.05		0.05	V
		$V_{DD} = 10V$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	V
V _{OH}	HIGH Level Output	I _O < 1 μA								
	Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		$V_{DD} = 10V$	9.95		9.95	10		0.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
V _{T-} Negative- Voltage	Negative-Going Threshold	$V_{DD} = 5V, V_{O} = 4.5V$	0.7	2.0	0.7	1.4	2.0	0.7	2.0	V
	Voltage	$V_{DD} = 10V, V_O = 9V$	1.4	4.0	1.4	3.2	4.0	1.4	4.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$	2.1	6.0	2.1	5.0	6.0	2.1	6.0	V
V _{T+}	Positive-Going Threshold	$V_{DD} = 5V, V_{O} = 0.5V$	3.0	4.3	3.0	3.6	4.3	3.0	4.3	V
Volta	Voltage	$V_{DD}=10V,V_{O}=1V$	6.0	8.6	6.0	6.8	8.6	6.0	8.6	V
		$V_{DD} = 15V, V_{O} = 1.5V$	9.0	12.9	9.0	10.0	12.9	9.0	12.9	V
	Hysteresis (V _{T+} – V _{T-})	$V_{DD} = 5V$	1.0	3.6	1.0	2.2	3.6	1.0	3.6	V
	Voltage	$V_{DD} = 10V$	2.0	7.2	2.0	3.6	7.2	2.0	7.2	V
		$V_{DD} = 15V$	3.0	10.8	3.0	5.0	10.8	3.0	10.8	V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
C	Current (Note 3)	$V_{DD} = 10V, \ V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10 ⁻⁵	-0.30		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.30		10 ⁻⁵	0.30		1.0	μA

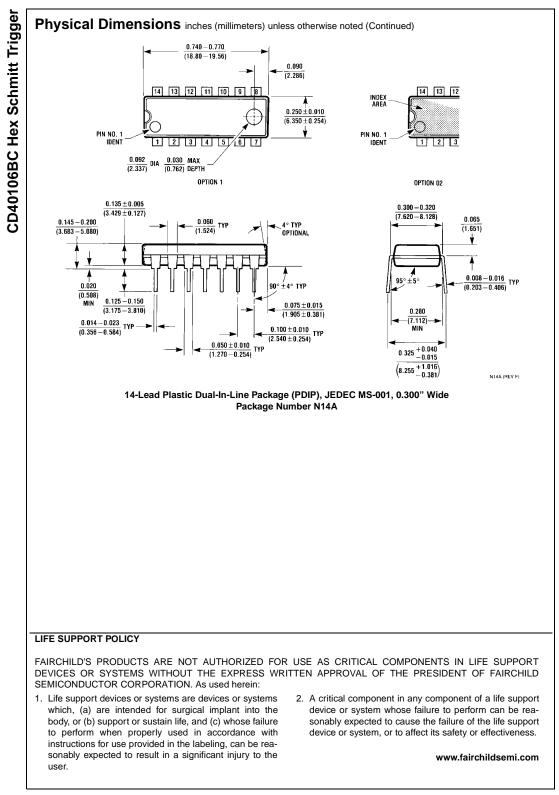
Note 3: I_{OH} and I_{OL} are tested one output at a time.


www.fairchildsemi.com

AC Electrical Characteristics (Note 4) $T_A = 25^{\circ}C, C_L = 50 \text{ pF}, R_L = 200k, t_r \text{ and } t_f = 20 \text{ ns}, \text{ unless otherwise specified}$						
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} or t _{PLH}	Propagation Delay Time from	$V_{DD} = 5V$		220	400	ns
	Input to Output	$V_{DD} = 10V$		80	200	ns
		$V_{DD} = 15V$		70	160	ns
t _{THL} or t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate (Note 5)		14		pF

Note 4: AC Parameters are guaranteed by DC correlated testing.


Note 5: C_{PD} determines the no load ac power consumption of any CMOS device. For complete explanation see 74C Family Characteristics Application Note, AN-90.


Switching Time Waveforms

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.