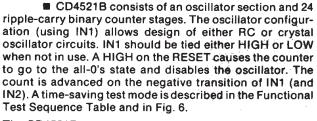
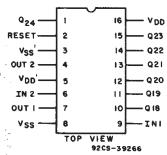
018 RESET 2 -Q₁₉ 920 13 - Q₂₁ VDD-14 -Q₂₂ -Q₂₃ VDD = 16 V_{SS} = 8 OUT 2 -92 CS - 39 265

FUNCTIONAL DIAGRAM


CMOS 24-Stage Frequency Divider

High-Voltage Types (20-Volt Rating)


Features:

- Reset disables the RC oscillator for lowpower standby condition
- V_{DD}' and V_{SS}' pins are brought out from the crystal oscillator to allow use of external resistors for low-power operation . Meets all requirements of JEDEC
- Maximum input current of 1 µA at 18 V over full package-temperature range: 100 nA at 18 V and 25°C
- Common reset

- 100% tested for 20-V quiescent current
- 5, 10 and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

The CD4521B types are supplied in 16-lead hermetic dualin-line ceramic packages (D and F suffixes), 16-lead dualin-line plastic packages (E suffix), and in chip form (H

TERMINAL ASSIGNMENT

OUTPUT	COUNT CAPACITY	
Q18	218 = 262,144	
Q19	2 ¹⁹ = 524,288	
Q20	2 ²⁰ = 1,048,576	
Q21	2 ²¹ = 2,097,152	
Q22	2 ²² = 4,194,304	
Q23	2 ²³ = 8,388,608	
Q24	2 ²⁴ = 16.777.216	

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C	erate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (T _{stg})	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265°C

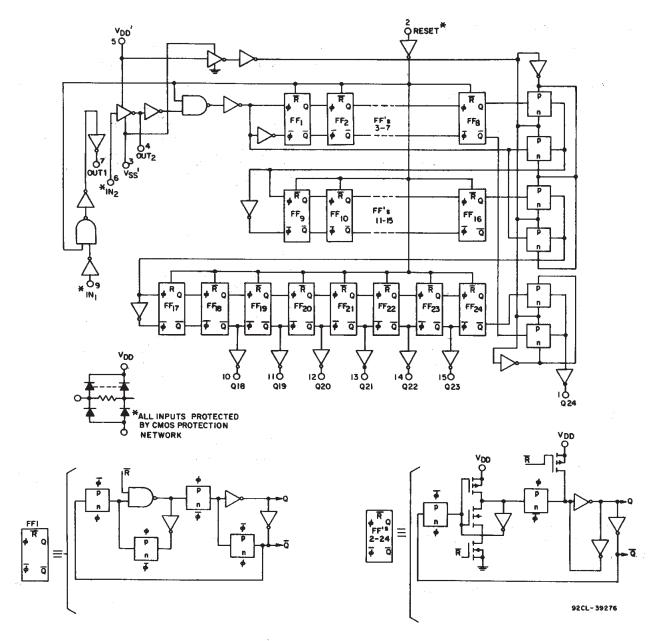


Fig. 1 - Logic diagram for CD4521B.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	со	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					UNITS		
	Vo	VIN	V _{DD}			1		+25]	
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.		
· · · · · · · · · · · · · · · · · · ·		0, 5	5	5.	5	150	150		0.04	5	μΑ	
Quiescent Device		0, 10	10	10	10	300	300		0.04	10		
Current, IDD Max.		0, 15	15	20	20	600	600		0.04	20] "	
	-	0, 20	20	100	100	3000	3000		0.08	100	<u></u> .	
Output Law (Sink)	0.4	0, 5	- 5	0.64	0.61	0.42	0.36	0.51	1			
Output Low (Sink)	0.5	0, 10	-10	1.6	1.5	1.1	0.9	1.3	2.6	_	mA	
Current, IoL Min.	1.5	0, 15	15	4.2	4	2.8	2.4	3.4	6.8	_		
	4.6	0, 5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1] ""^	
Output High (Source)	2.5	0, 5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		}	
Current, IoH Min.	9.5	0, 10	10	-1.6	. –1.5	1.1	-0.9	-1.3	-2.6			
	13.5	0, 15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_		
0.4		0, 5	5	0.05				0	0.05			
Output Voltage:		0, 10	10	0.05					0	0.05]	
Low-Level, Vol Max.		0, 15	15		0.05			I	0	0.05]	
		0, 5	5 .		. 4.	95		4.95	5	_		
Output Voltage:		0, 10	10	9.95			9.95	10	_]		
High-Level, V _{он} Min.	_	0, 15	15		14.95			14.95	15	_	l v	
1	0.5,4.5	_	5		1	.5		-	T -	1.5] "	
Input Low Voltage,	1, 9		10	3				. – .	3	7		
V _{IL} Max.	1.5,13.5	_	15	4				· - *	4			
	0.5,4.5		5		3	.5		3.5	_	· —		
Input High Voltage,	1, 9	_	10	7 11			7	_		\neg		
V _{IH} Min.	1.5,13.5		15				11		-]		
Input Current, In Max.	1 -	0, 18	18	±0.1	±0.1	±1	±1	<u> </u>	±10 ⁻⁵	±0.1	μΑ	

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operating is always within the following ranges:

	VDD	LIMITS			
CHARACTERISTIC	(V)	Min. Max.		UNITS	
Supply-Voltage Range (For TA = Full Package-To	emperature Range)		3	18	٧
		5	340	_	
Input Pulse Width		10	150		
•		15	120	–	
		5	180		ns
Reset Pulse Width	t _{W(R)}	10	80	_	
		15	50	_	
		5	_	2	
Input Pulse Frequency	fφ	10	-	5	MHz
		15	_	6.5	
Mak .		5	<u> </u>	15	μs
Input Pulse Rise or Fall Time	$t_r \phi, t_t \phi$	10	_	15	
		15	_	15	
		5	1K	10M	
R _T Operating Range		10	1K	10M	Ω
		15	1K	10M	
		5	15p	10M	
C _τ Operating Range		10	15p	10M	F
		15	15p	10M	

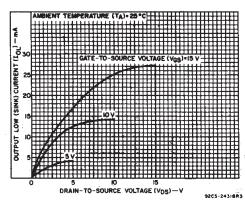


Fig. 2 - Typical output low (sink) current characteristics.

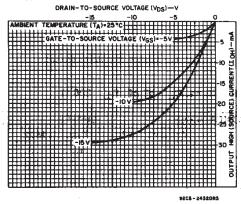


Fig. 4 - Typical output high (source) current characteristics.

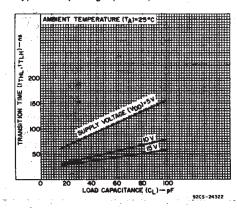


Fig. 6 - Typical transition time as a function of load capacitance.

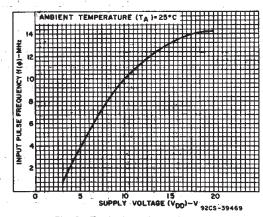


Fig. 8 - Typical maximum input pulse frequency vs. supply voltage.

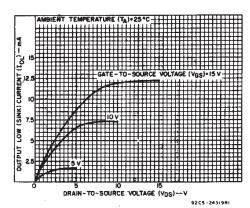


Fig. 3 - Minimum output low (sink) current characteristics.

ORAIN-TO-SOURCE VOLTAGE (VDS)—V

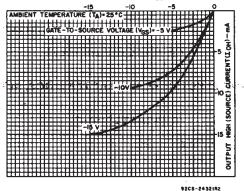


Fig. 5 - Minimum output high (source) current characteristics.

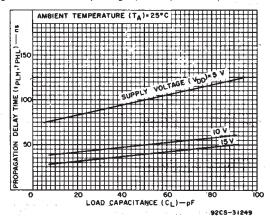


Fig. 7 - Typical propagation delay time (Q_n to Q_n+1) as a function of load capacitance.

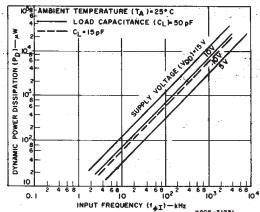
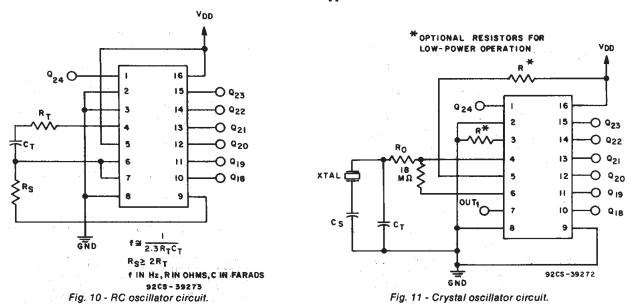



Fig. 9 - Typical dynamic power dissipation as a function of input frequency.

DYNAMIC ELECTRICAL CHARACTERISTICS, At T_A = 25°C; Input t_r,t_f = 20 ns, C_L = 50 pF, R_L = 200 Ω

01147407771		TEST CONDITIO		UNITS			
CHARACTERISTIC		1	$V_{DD}(V)$	Min.	Тур.	Max.	UNITS
Propagation Delay Time:	tpLH, tpHL		5	_	4.5	9	
Input to Q18			10		1.7	3.5	
			15		1.3	2.7	μs
		,	- 5		6	12] ^µ S
Input to Q24	- No.		10		2.2	4.5	
· · · · · ·			15		1.7	3.5	
			5	_	400	800	
Reset to Qn			10	· —	170	340	
			15	_	120	240	
Transition Time*	t _{THL} , t _{TLH}	· .	5	_	100	200	
~			10	. —	50	100	
			15		40	80	ns
Minimum Input Pulse Width	t _w φ		- 5	_	170	340	'''
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	- 	75	150	
			15		60	120	
Minimum Reset Pulse Width	twin		5	_	90	180	
			10	_	40	80	
			15		25	50	<u> </u>
Maximum Input Pulse Frequency	fφ		5	2	4	-	
and the second s			10	5	10	-	MHz
			15	6.5	13		ļ
Input Pulse Rise or Fall Time	$t_r \phi$, $t_f \phi$.5	_	-	15	1
e de la companya del companya de la companya del companya de la co			10	_	-	15	μs
			15			15	
Input Capacitance	CIN	Any Input			5	7.5	pF
R _T Operating Range			5	1K	-	10M	_
			10.	1K	-	10M	Ω
			15	1K		10M	ļ
C _T Operating Range			5	15p	-	10μ	_
		į.	10	15p	-	10μ	F
	<u> </u>		15	15p		10μ	<u> </u>
Maximum Oscillator Frequency		R _T =1 KΩ	5	0.5	0.7	0.9	
		С _т =15 pF	10	1.2	1.5	1.8	MHz
		R _s =30 KΩ	15	1.7	2.1	2.5	<u> </u>

^{*}Not applicable for pin 4 (OUT2).

3

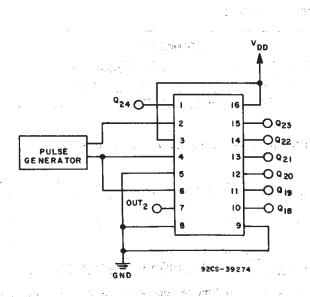


Fig. 12 - Functional test circuit.

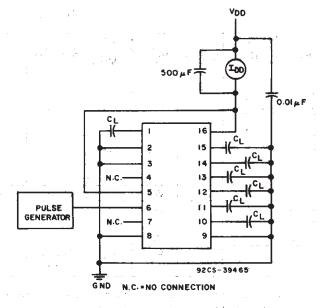


Fig. 13 - Dynamic power dissipation test circuit.

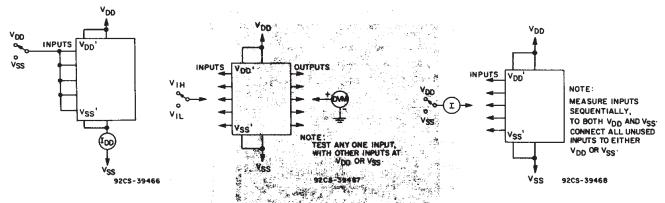


Fig. 14 - Quiescent device current.

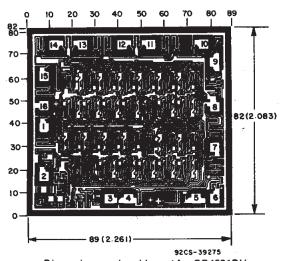

Fig. 15 - Input voltage.

Fig. 16 - Input current.

FUNCTIONAL TEST SEQUENCE

INPUTS OUTPUTS		OUTPUTS			COMMENTS	
RESET	IN 2	OUT 2	V _{SS} '	V _{DD} ′	Q18-Q24	COMMENTS
	2					Counter is in three 8-stage sections in parallel mode.
1	0	0	Vpp	Vss	LOW	Counter is reset. IN 2 and OUT 2 are tied together.
0	1	1	Vop	Vss		First LOW-to-HIGH transition at IN 2.
	0	0				
	1	1 1				
0		_	V _{DD}	Vss	}	255 LOW-to-HIGH transitions are clocked in at IN 2.
		-			1	
	_	1 –				
0	1	1	VDD	Vss	HIGH	The 255th LOW-to-HIGH transition.
0	0	0	V _{DD}	Vss	HIGH	
0	0	0	Vss	Vss	HIGH	Counter is converted back to 24-stage serial-mode operation.
0	1	0	Vss	V _{DD}	HIGH	
0	1		Vss	V _{DD}	HIGH	OUT 2 reverts to output operation.
0	0	1	Vss	V _{DD}	LOW	Counter ripples from an all-HIGH state to an all-LOW state.

A test function, which divides, has been included to reduce the time required to test all 24 stages of the counter. Three sections are loaded in parallel to 255 counts, forcing all the outputs to be in the HIGH state. The counter is changed back to serial-mode operation and one additional LOW-to-HIGH transition is entered at IN 2, which causes the outputs to ripple from an all-HIGH state to an all-LOW state.

Dimensions and pad layout for CD4521BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated