TEXAS INSTRUMENTS

Data sheet acquired from Harris Semiconductor SCHS068

CMOS Hex Buffer

High-Voltage Types (20-Volt Rating)

3-State Non-Inverting Type

CD4503B is a hex noninverting buffer with 3-state outputs having high sinkand source-current capability. Two disable controls are provided, one of which controls four buffers and the other controls the remaining two buffers. The CD4503B types are supplied in 16-lead hermetic dual-inline ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

Features:

- 1 TTL-load output drive capability
- 2 output-disable controls
- 3-state outputs
- Pin compatible with industry types MM80C97, MC14503, and 340097
- 5-V, 10-V, and 15-V parametric ratings
 Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices."

Applications:

- 3-state hex buffer for interfacing IC's
- with data buses CMOS to TTL hex buffer

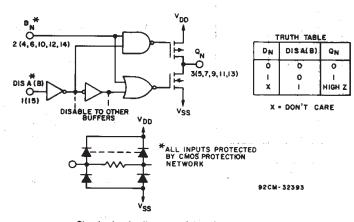
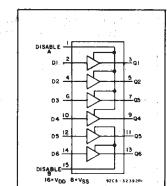



Fig. 1—Logic diagram of 1 to 6 identical buffers.

MAXIMUM RATINGS, Absoluts-Maximur		ತ್ತು ಸ್	
MAXIMUM RATINGS, Absolute-Maximum	n Values:		
DC SUPPLY-VOLTAGE RANGE, (VDD)			
Voltages referenced to VSS Terminal)			0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS			
DC INPUT CURRENT, ANY ONE INPUT			±10mA
POWER DISSIPATION PER PACKAGE (F For $T_A = -55^{\circ}C$ to +100°C	°D):		
For T _A = -55°C to +100°C			
For T _A = +100°C to +125°C		Derate Lir	earity at 12mW/ ^O C to 200mW
DEVICE DISSIPATION PER OUTPUT TRA			
FOR TA = FULL PACKAGE-TEMPERAT	URE RANGE (All F	ackage Types)	
OPERATING-TEMPERATURE RANGE (TA			
STORAGE TEMPERATURE RANGE (Tstg)			
LEAD TEMPERATURE (DURING SOLDER	RING):		
At distance $1/16 \pm 1/32$ inch (1.59 ± 0.7	(9mm) from case fo	or 10s max	+265°C

FUNCTIONAL DIAGRAM

CD4503B Types

Fig. 2—Typical n-channel output low (sink) current characteristics.

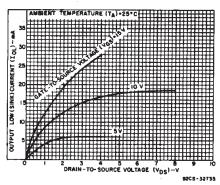
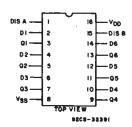



Fig. 3—Minimum n-channel output low (sink) current characteristics.

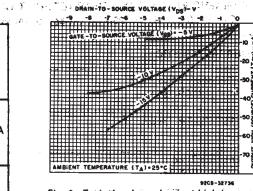
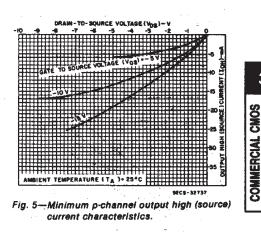
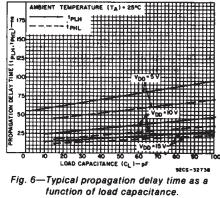
TERMINAL ASSIGNMENT

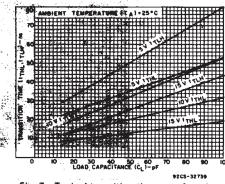
7

たいした教育でもない

STATIC ELECTRICAL CHARACTERISTICS

		IDITIQ				MP er atures (°C)			U N I		
	Vo	VIN	VDD					+ 25			TS
	(V)	(V)	(V)	-55	-40	+ 85	+ 125	Min.	Typ.	Max.	3
Quiescent		0,5	5	1	1	30	30	—	0.02	1	
Device		0,10	10	2	2	60	60	_	0.02	2	μA
Current,		0,15	15	4	4	120	120		0.02	4	μ.
IDD Max.	· ·	0,20	20	20	20	600	600		0.04	20	1
Output			_				· ·				
Low	0.4	0	5	2.6	2.5	1.4	1.3	2.1	2.3	<u>. </u>	
(Sink)	_0.5 	0	10	6.5	6.4	3.9	3.8	5.5	6.2		
Current	1.5	0	15	19.2	18.9	11.4	11.2	16.1	23		
IOL Min. Output				<u> </u>			ч. С.				
High	4.6	5	5	-1.2	-1.16	-0.7	-0.7	-1.02		_	mA
(Source)	2.5	5	5	5.8	-5.7	-3.4	-3	-4.8	—6 .1		
Current,	9.5	10	10		-3	-1.9	-1.8	-2.6	-3.7	_	
IOH Min.	13.5	15	15	8.2	8	-4.9	-4.8	-6.8	-14.1	'	
Output					L		<u>. 1-81</u>				
Voltage:	_ ~	0,5	5	0.05			_	0	0.05		
Low-											
Level,		0,10	10	0.05			_	0	0.05		
VOL Max.	10 min -	0,15	15	0.05			—	0	0.05	v	
Output											
Voltage:	· ·	0,5	5	4.95			4.95	5	:		
High-											
Level,		0,10	10		9.95			9.95	10	_	
VOH Min. Input Low	0.5,4.5	0,15	15 5				14.95	15	_		
Voltage,	1,9	_	5 10	1.5			-		1.5		
Vil Max.	1.5,13.5	_	15				<u> </u>		_	3	
Input	1.0,10.0		1,0			· · · · · · · · · · · · · · · · · · ·	,		_	- 4	
High	0.5.4.5	_	5		3.	5		3.5	_		V
Voltage,	1.9		10		7	-		7		·	ar a
VIH Min.	1.5,13.5		15		1	1		11		_	
Input											
Current	-	0,18	18	±0.1	±0.1	±1	±1	_	± 10 ⁻⁵	±0.1	
IN Max.	•										
3-State											μA
Output											
Leakage	0,18	0,18	18	±0.4	±0.4	± 12	± 12	-	± 10 ⁻⁴	±0.4	
Current,											
LOUT											;
Max.											


Fig. 4—Typical p-channel output high (source) current characteristics.

3

HIGH VOLTAGE ICS

Fig. 7—Typical transition time as a function of load capacitance.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected that operation is always within the following ranges:

CHARACTERISTIC	LIM		
CHARACTERISTIC	Min.	Max.	UNITS
Supply-Voltage Range (For			
TA = Full Package- Temperature Range)	3	18	V

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25$ °C; input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω unless otherwise specified.

CHARACTERISTIC	VDD	LIMITS			
CHARACTERISTIC	ন নি	Тур.	Max.	UNITS	
Propagation Delay Time:	5	75	150	1	
Low-to-High, tpLH	10	35	70	ns	
	15	25	50		
High-to-Low, tpHL	5	55	110		
	10	25	50	ns	
	15	17	35		
Transition Time:	5	50	90		
Low-to-High, tTLH	10	30	45	ns	
	15	25	35		
High-to-Low, t _{THL}	5	35	70	ľ	
	10	20	40	ns	
	15	13	25		
3-State Propagation Delay Time: $R_L = 1 k\Omega$	5	70	140		
tPHZ, tPZH	10	30	60	ns	
	15	25	50		
tpzL, tpLz	5	90	180		
	10	40	80	ns	
	15	35	70	ł	

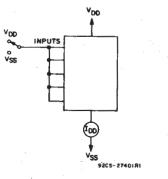
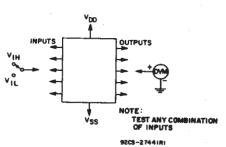
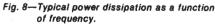




Fig. 10-Quiescent-device-current test circuit.

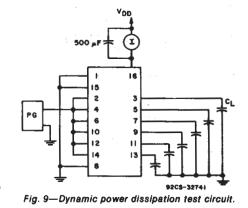


Fig. 11—Input-voltage test circuit.

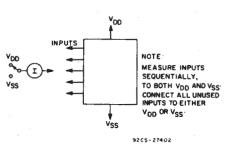
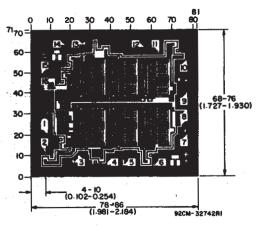



Fig. 12—Input current test circuit.

۰.

Dimensions and pad layout for CD4503BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated